Pathophysiology and Treatment of Essential Hypertension

Phyllis August, MD, MPH
Ralph A. Baer MD Professor of Research in Medicine
Director, Hypertension Center
Weill Cornell Medical College
Director, Lang Research Center
New York Hospital Queens

Natural History of Essential Hypertension

Premature Death
- Generalized arteriosclerosis and atherosclerosis
- Heart disease
- Stroke
- Kidney Failure
- Malignant Hypertension (fibrinoid necrosis)

Hypertension Is a Component of a Chronic Cardiovascular Syndrome

Persons with hypertension have more cardiovascular disease
Life Expectancy: reduced by ~ 5 yrs
(Franco et al. Hypertension, 2005)

Implications for treatment:
Treatment should focus on lowering CV risk as well as lowering BP

Classification of BP for Adults*

<table>
<thead>
<tr>
<th>BP Classification</th>
<th>SBP mm Hg</th>
<th>or</th>
<th>DBP mm Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td><120</td>
<td>or</td>
<td><80</td>
</tr>
<tr>
<td>Prehypertension</td>
<td>120–139</td>
<td>or</td>
<td>80–89</td>
</tr>
<tr>
<td>Stage 1 Hypertension</td>
<td>140–159</td>
<td>or</td>
<td>90–99</td>
</tr>
<tr>
<td>Stage 2 Hypertension</td>
<td>≥160</td>
<td>or</td>
<td>≥100</td>
</tr>
</tbody>
</table>

SBP=systolic BP, DBP=diastolic BP.
Hypertension is common and is strongly related to CV disease.

- Lowering blood pressure reduces CV disease in everyone: The ‘sicker’ (and older) you are, the greater benefit from lowering BP.

- If you are ‘older’ (>60, >65, >70); Systolic BP predicts outcomes.

- Prehypertension: you can’t be too normotensive.

Hypertension is Common:
Persons who are normotensive at age 55 have a 90% lifetime risk for developing HTN. (Framingham Data)
Global Burden of Hypertension:
1 billion 2000, 1.5 billion 2025

• 2001: 7.6 million deaths (13.5% global total)
• 54% stroke, 47% IHD
• 1/3 deaths in Europe and Asia

Most of the disease burden is in low and middle income economies

Hypertension is Strongly Related to CVD

• The relationship of BP to risk of CVD is continuous, consistent, and independent of other risk factors.

• Hypertension acts synergistically with other CV risk factors

• 24 hour BP, nighttime BP, BP variability – 24 hour, and visit to visit are associated with increased CV risk
 (Rothwell et al; ASCOT trial, 2010)

Other Hemodynamic Measurements and CV Risk: Pulse Wave Velocity

• Aortic Pulse Wave Velocity: indirect measurement of arterial stiffness measured non invasively
 - PWV depends on BP and characteristics of aortic wall and increases with age

• Aortic Stiffness may persist with good BP control

• Meta analysis (n=15,877) of longitudinal data
 (Vlachopoulos et al, 2010)

PWV is an independent predictor of CV outcomes

CV Mortality Risk Doubles with Each 20/10 mm Hg BP Increment*

*Individuals aged 40-70 years, starting at BP 115/75 mm Hg.
CV, cardiovascular; SBP, systolic blood pressure; DBP, diastolic blood pressure

CV mortality risk
SBP/DBP (mm Hg)
115/75 135/85 155/95 175/105
0 1 2 3 4 5 6 7 8

* 2001 Twijnemaar EJ.
Central Pressure Measurement

- Noninvasive measurement of impact of the reflected arterial pulse wave on the central circulation
- Central pressures are affected by arterial stiffness, heart rate, and possibly dietary Na
- Central BP may be a better predictor of CV outcomes than brachial BP. *Roman et al*

Should ‘Prehypertension’ be Treated?

- No data from RCT’s supporting drug Rx
- Benefits of drug treatment in patients with prehypertension would be small:
 - Systolic of 130-139 c/w <120 mm Hg would result in .7 deaths/100 patients over 25 years)
 - Lifestyle modification is appropriate for all adults

Hypertension is the most easily treatable risk factor for cardiovascular disease (‘low hanging fruit’)

Unequivocal Benefits of Lowering BP:

- Relative Risk Reduction Constant
- Absolute Risk Reduction Varies

<table>
<thead>
<tr>
<th>Condition</th>
<th>Average Percent Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke incidence</td>
<td>35–40%</td>
</tr>
<tr>
<td>Myocardial infarct</td>
<td>20–25%</td>
</tr>
<tr>
<td>Heart failure</td>
<td>50%</td>
</tr>
</tbody>
</table>
Persons with highest overall CV risk benefit most from lowering BP

- Relative risk: likelihood of developing CV disease in hypertensives relative to normotensives (CVD Incidence HT/CVD Incidence NT) and is similar in both high and low risk patients.
- Absolute risk: incidence of CV disease in a population (normotensive or hypertensive) determined by synergistic effect of all CV risk factors e.g. age, gender, symptomatic CVD, LVH, GFR, smoking, lipids, diabetes.
- Relative risk reduction is the reduction in risk relative to baseline risk and is similar in high and low risk groups (CVDi Placebo – CVDi Rx/CVDi Placebo).
- Reductions in absolute risk are greater, number needed to treat is smaller with higher blood pressure and multiple cardiovascular risk factors.

Hypertension Epidemiology
Summary

- Hypertension is common and is strongly related to CV disease.
- Lowering blood pressure reduces CV disease in everyone: The ‘sicker’ (and older) you are, the greater benefit from lowering BP.
- If you are ‘older’ (? > 60, ? > 65); It’s the Systolic.
- Prehypertension: you can’t be too normotensive, but benefits of pharmacologic treatment remain unproven.

Ambulatory BP Monitoring

- ABPM is indicated for evaluation of ‘suspected’ white-coat HTN (newly diagnosed stage 1, no target organ injury, females, non-smokers).
- Risk stratification: Non-Dipping (failure of nocturnal decrease in by 10 to 20% is associated with increased risk for cardiovascular events; Higher nighttime BP – increased CV risk.
- Hypotensive episodes.
- National Institute for Health and Clinical Excellence (NICE) recommends ABPM to confirm diagnosis of HTN.

Diagnostic Thresholds for Ambulatory Blood Pressure

Kikuye et al 2007

<table>
<thead>
<tr>
<th>Category</th>
<th>24 hour systolic/diastolic (mm Hg)</th>
<th>Daytime (mm Hg)</th>
<th>Nighttime (mm Hg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>115/75</td>
<td>120/80</td>
<td>100/65</td>
</tr>
<tr>
<td>Normal</td>
<td>125/75</td>
<td>130/85</td>
<td>110/70</td>
</tr>
<tr>
<td>Hypertension</td>
<td>130/80</td>
<td>140/85</td>
<td>120/70</td>
</tr>
</tbody>
</table>
Home BP Monitoring

• Provides out of office readings, BP variability, identification of WCH and MH

• Lower cost, high availability, easy application, useful over long periods of time

• Improved BP, Fewer medications, better results when used with a program for adjustment of medications (McManus 2010; Agarwal 2011)

Home Blood Pressure Monitoring

• NICE guidelines for confirmation of HTN
- Take 2 consecutive readings 1 min apart
- Seated position
- Record BP twice daily AM and PM
- 4 to 7 days of recording

BP Measurement: Summary

• Although office BP is the most widely used method, ambulatory BP is a better predictor of CV risk

• ABP is the gold standard test for diagnosing white coat hypertension

• Hypertension on ABP is defined as a mean 24 hour BP of > 130/80 mm Hg

Pathophysiology:
Hypertension is a Heterogeneous Disorder, But.....
Pathophysiology of Hypertension: Decreased Na Excretion

- Essential Hypertension
- Dysregulation of hormones (Ang II, RAS)
- Decreased nephron number
- Genetic variations in sodium-regulatory proteins

Pathophysiology of Hypertension: Research Directions

- RAS system: AT2 Receptor effects, ACE-2: Ang 1-7
- Genetics: GWAS – limited by heterogeneity of phenotype, polygenic nature of 'essential hypertension'
- Single gene defects: WNK kinases – familial hyperkalemic hypertension
- Interrelationships between SNS, obesity, RAS
- Newly discovered potential mediators of blood pressure: renalase (metabolizes catecholamines), incretins (GLP-1), DPP 4 inhibitors, adipokines (leptin, adiponectin), TGF-β.

Treatment of Hypertension

Goals of Rx

- To reduce morbidity and mortality by the least intrusive means possible. This may be accomplished by achieving and maintaining
 - SBP <140 mm Hg
 - DBP <90 mm Hg

- (?) Different targets for Elderly, Diabetics, proteinuric renal disease, CHD

- Controlling other cardiovascular risk factors

Major Risk Factors That Increase Mortality in Hypertension

- Smoking
 - 5-year risk of Major CV Event for 50 year old man with BP 160/110 mmHg
 - + high cholesterol: 2.5-5%
 - + high cholesterol and smoking: 15-30%

- Gender: men, postmenopausal women
- Family history
- Albuminuria
Lifestyle Modification: Do they work?

<table>
<thead>
<tr>
<th>Modification</th>
<th>Approximate SBP reduction (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight reduction</td>
<td>5–20 mmHg/10 kg weight loss</td>
</tr>
<tr>
<td>Adopt DASH eating plan</td>
<td>8–14 mmHg</td>
</tr>
<tr>
<td>Dietary sodium reduction (2.4 Na g/d or 6 NaCl g/d)</td>
<td>2–8 mmHg</td>
</tr>
<tr>
<td>Physical activity (30-45 min most days of the week)</td>
<td>4–9 mmHg</td>
</tr>
<tr>
<td>Moderation of alcohol consumption</td>
<td>2–4 mmHg</td>
</tr>
</tbody>
</table>

Treatment of Hypertension

- When Should treatment be initiated?
- What are the treatment targets? (how low should you go?)
- What drugs should you use?

2014 Evidence-Based Guideline for the Management of High Blood Pressure in Adults – JNC 8

Paul A. James, MD; Suzanne Oparil, MD; Barry L. Carter, PharmD; William C. Cushman, MD; Cheryl Dennison-Himmelfarb, RN, ANP, PhD; Joel Handler, MD; Daniel T. Lackland, DrPH; Michael L. LeFevre, MD, MPH; Thomas D. MacKenzie, MD, MSPH; Olugbenga Ogedegbe, MD, MPH, MS; Sidney C. Smith Jr, MD; Laura P. Svetkey, MD, MHS; Sandra J. Taler, MD; Raymond R. Townsend, MD; Jackson T. Wright Jr, MD, PhD; Andrew S. Narva, MD; Eduardo Ortiz, MD, MPH

Although this guideline provides evidence-based recommendations for the management of high BP and should meet the clinical needs of most patients, these recommendations are not a substitute for clinical judgment, and decisions about care must carefully consider and incorporate the clinical characteristics and circumstances of each individual patient.

JAMA Published online December 18, 2013.

Recommendation 1

- In the general population aged ≥60 years
 - Initiate pharmacologic treatment to lower blood pressure (BP) at systolic blood pressure (SBP) 150 mmHg or diastolic blood pressure (DBP) 90 mmHg
 - Treatment goal SBP < 150 mm Hg and goal DBP < 90 mmHg
 - (Strong Recommendation – Grade A)
Recommendation 1 Corollary Recommendation

- In the general population aged ≥60 years
 - Treatment does not need to be adjusted
 - if pharmacologic treatment for high BP results in lower achieved SBP (eg, <140 mmHg) and treatment is well tolerated and without adverse effects on health or quality of life.
 - (Expert Opinion – Grade E)

Treatment of Hypertension in the Very Elderly (Beckett et al, 2008)

- 4,000 subjects: Indapamide vs Placebo
- Average age 83 years
- Baseline blood pressure ~ 173/90 mm Hg
- 6% diabetes, 60% female, BMI 24

Kaplan-Meier Estimates of the Rate of End Points, According to Study Group

Treatment of Hypertension in Elderly

- Effects on mortality of aggressive treatment remain unproven (HYVET)
- Metaanalysis suggests benefit for stroke and CHF (Rx vs placebo)
- Treatment to lower targets (<140) unproven (may contribute to cognitive decline)
- Avoid overtreatment!
Treatment of Hypertension in Elderly

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Population</th>
<th>Targets</th>
<th>Outcomes</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>HYVET (2008)</td>
<td>83 (n=3845)</td>
<td>Caucasian</td>
<td><160</td>
<td>Mortality, Stroke (2 yrs)</td>
</tr>
<tr>
<td>JATOS (2008)</td>
<td>74 (n=2212)</td>
<td>Japanese</td>
<td><140 vs <160</td>
<td>Composite CV, Renal (2 yrs)</td>
</tr>
<tr>
<td>CARDIO-Sis (2009)</td>
<td>67 (n=1111)</td>
<td>European</td>
<td><140 vs <130</td>
<td>LVH (ECG), Composite CV (2 yrs)</td>
</tr>
<tr>
<td>VALISH (2010)</td>
<td>76 (n=3260)</td>
<td>Japanese</td>
<td><140 vs 140-150</td>
<td>Composite CV, Renal (3 yrs)</td>
</tr>
</tbody>
</table>

Recommendation 2

- In the general population <60 years
 - Initiate pharmacologic treatment to lower DBP 90mmHg
 - **Treatment goal** DBP<90mmHg.
- For ages 30-59 years
 - Strong Recommendation – Grade A
- For ages 18-29 years
 - Expert Opinion – Grade E

Recommendation 3

- In the general population <60 years
- Initiate pharmacologic treatment to lower BP at SBP ≥ 140mmHg
- **Treatment goal** SBP <140mmHg.
 - (Expert Opinion – Grade E)

How Low Should You Go?

- < 90 mm DBP: HDFP, Hypertension-Stroke Cooperative, MRC, ANBP, VA Cooperative
- HOT study: 18,790 patients age of 61.5 years treated with felodipine-based therapy: no additional benefit of DBP <85 or 80 mm Hg in non diabetics
- Previous guidelines: AHA, JNC 7 – 130/80 for CKD and diabetes
Recommendation 4

- In the population aged ≥18 years with chronic kidney disease (CKD)

- Initiate pharmacologic treatment to lower BP at SBP ≥ 140mmHg or DBP ≥ 90mmHg

- Treatment goal SBP<140mmHg and goal DBP<90mmHg.
 - (Expert Opinion – Grade E)

Treatment Targets in CKD

- MDRD: low targets reduced progression to ESRD
- African American Study of Kidney Disease (AASK): no difference in cardiorenal outcomes between intensive (<120/80) and standard (135–140/85–90)
- ALLHAT, ACCORD: no difference in outcomes related to drugs or targets
- Lower treatment targets may be appropriate in proteinuric CKD (IRMA-2)
- SPRINT trial in progress

Recommendation 5

- In the population aged ≥18 years with diabetes

- Initiate pharmacologic treatment to lower BP at SBP ≥ 140mmHg or DBP ≥ 90mmHg

- Treatment goal SBP <140mmHg and DBP <90mmHg.
 - (Expert Opinion – Grade E)
Recommendation 6

- General nonblack population, including those with diabetes
- Initial antihypertensive treatment should include:
 - A thiazide-type diuretic, calcium channel blocker (CCB), angiotensin-converting enzyme inhibitor (ACEI), or angiotensin receptor blocker (ARB).
 - Moderate Recommendation – Grade B

Does Initial Drug Choice Matter?

- Monotherapy with most drugs is effective about 50% of the time (in unselected patients)
- Most patients with stage 2 or higher need more than 1 drug
- Are there class-specific attributes of drugs that are associated with benefits beyond lowering blood pressure?

Special Considerations in Selecting Drug Therapy

- Proven efficacy in preventing CVD
- Demographics
- Coexisting diseases and therapies
- Quality of life
- Physiologic and biochemical measurements
- Drug interactions
- Economic considerations

Demographics and Antihypertensive Drugs

- Younger white patients respond well to ACE inhibitors and β-blockers. Older black patients respond well to diuretics and calcium channel blockers (VA Cooperative Study)
- There is heterogeneity across all age and ethnic subgroups
Renin Profiling and Choice of Antihypertensive Drugs

- 40% low renin; 15%-20% high renin; 40% medium renin
- Small studies demonstrate efficacy of diuretics and calcium channel blockers in low-renin HTN. ACE inhibitors and β-blockers demonstrate efficacy in high-renin HTN
- Small clinical trial (Egan et al) demonstrates feasibility and efficacy of strategy
- Large studies evaluating this strategy have not been done

Do Antihypertensive Drugs offer cardiovascular protection beyond blood pressure lowering?

Is one drug better than another?

- Metaanalysis of trials involving over 464,000 hypertensive patients
- Thiazides and ACE inhibitors may prevent CHF more than CCBs
- Beta blockers prevent recurrent CHD, but not recommended by JNC 8 as first line Rx
- Calcium channel blockers prevent stroke

Recommendation 7

- General black population, including those with diabetes
- Initial antihypertensive treatment should include a thiazide-type diuretic or CCB (based on prespecified subgroup of ALLHAT).
- **For general black population**
 - Moderate Recommendation – Grade B
- **For black patients with diabetes**
 - Weak Recommendation – Grade C)
Hypertension in Blacks Consensus Statement ISHIB 2010

- Higher prevalence of HTN, increased cardiorenal complications and mortality
- Emphasize importance of socioeconomic rather than racial/genetic factors
- Lower targets: < 135/85 for low risk; < 130/80 for high risk
- Combination therapies, lifestyle modifications and attention to comorbidities
- Deemphasis on using race to select antihypertensive drug regimen although recommend starting with diuretic or CCB

Recommendation 8

- In the population aged ≥18 years with CKD
 - Initial (or add-on) antihypertensive treatment
 - Should include an ACEI or ARB to improve kidney outcomes.
 - Applies to all CKD patients with hypertension regardless of race or diabetes status.
 - Moderate Recommendation – Grade B

Guideline Comparisons of Goal BP and Initial Drug Therapy for Adults With Hypertension

<table>
<thead>
<tr>
<th>Guideline</th>
<th>Population</th>
<th>Goal BP, mm Hg</th>
<th>Initial Drug Treatment Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>JNC 8</td>
<td>General ≥60 y</td>
<td><130/80</td>
<td>Nonblack: thiazide-type diuretic, ACEI, ARB, or CCB</td>
</tr>
<tr>
<td></td>
<td>General <60 y</td>
<td><130/80</td>
<td>Black: thiazide-type diuretic or CCB</td>
</tr>
<tr>
<td></td>
<td>Diabetic</td>
<td><140/90</td>
<td>Thiazide-type diuretic, ACEI, ARB, or CCB</td>
</tr>
<tr>
<td>NICE 2011</td>
<td>General <55 y</td>
<td><140/90</td>
<td>ACEI or ARB</td>
</tr>
<tr>
<td>KDIGO 2012</td>
<td>CKD no proteinuria</td>
<td><140/90</td>
<td>ACEI or ARB</td>
</tr>
<tr>
<td></td>
<td>CKD + proteinuria</td>
<td><130/80</td>
<td>ACEI or ARB</td>
</tr>
</tbody>
</table>

Diabetes and Antihypertensive Rx

- ~1,000 patients treated with ‘newer drugs’ to avoid 6 iatrogenic cases of diabetes
- ~1000 patients would have to be treated for 1 year with an ARB (vs placebo) to prevent 2 cases of new onset diabetes (TRANSCEND, PROFESSION)
- Ramipril c/w placebo did not reduce incidence of diabetes
Beta Blockers 2014

Cons:
- Increased insulin resistance
- ? Inferior stroke protection (LIFE, ASCOT)
- ? Less favorable effects on arterial stiffness
- Known adverse effects and decreased efficacy in elderly

Pros:
- Post MI, CHD
- Migraines
- Tachyarrhythmias
- ‘Special Effects’: nebivolol nitric oxide donor, ? Metabolically neutral?

Diuretics 2014

Pros
- Widely effective
- Enhances effects of other drugs (e.g. ACE Is)
- CHF, CKD
- Thiazide, K sparing, Loop

Cons
- Metabolic: Na; Ca; K; Uric acid; glucose;
- Erectile dysfunction
- Antiandrogen effects of MR antagonists

Chlorthalidone vs HCTZ
Dorsch et al 2011

- Retrospective cohort analysis of MRFIT study
- Despite lower potassium and higher uric acid, there was a slight increase in CV events in HCTZ group
- Chlorthalidone is more potent, lowered SPB more than HCTZ and is longer acting
- LDL and glucose levels were lower on Chlorthalidone

Thiazide vs. ‘Thiazide Like’

- Network Meta-analysis: Chlorthalidone is superior to HCTZ in preventing CV events – not due to differences in BP levels. *Roush et al Hypertension 2012*
- Meta-Analysis of dose response relationships for HCTZ, chlorthalidone: Chlorthalidone is 3X more potent than HCTZ and this may explain better outcomes. *Peterzan et al Hypertension 2012*
- Unresolved whether one drug is ‘better’
Calcium Channel Blockers 2015

Pros
- Effective, well tolerated (good for Na sensitive HTN, eg. Elderly, blacks)
- May be more protective against stroke
- DHP and non-DHP can be combined

Cons
- Constipation, sympathetic nervous system stimulation, edema, headaches
- DHPs may increase intraglomerular pressure

ACE Inhibitors

Pros
- Effective, well tolerated
- Renoprotective, cardio protective
- Favorable metabolic profile
- ? Antiinflammatory

Cons
- Cough
- Angioedema
- Hyperkalemia
- ? Ang II escape

ARB's 2015

Pros
- Safe, effective, minimal side effects
- No cough (mostly)

Cons
- Some angioedema
- Hyperkalemia
- Dual RAS blockade: hyperkalemia, decreased GFR
- ??? Cancer– NO!

Other Antihypertensives

- Aldosterone blockade
- Centrally acting alpha agonists (clonidine, methyldopa)
- Alpha blockade (e.g. doxazocin)
- Direct vasodilators (hydralazine, minoxidil)
Aldosterone

- Fibrotic effects: CHF, progression of renal disease
- Treatment of resistant hypertension with aldosterone blockade
- Role in essential hypertension
- ‘Epidemic’ of primary aldosteronism

Combination Therapy

- Guidelines recommend initiating combination therapy for stage 2 hypertension, and for those with BP > 15/10 mm Hg above goal
- Recommended by ISHIB for African Americans
- *Egan et al. 2012*: Initial therapy with single pill combination therapy (HR 1.53) provided better hypertension control in the first year than free combinations (HR 1.34) or monotherapy.

Resistant Hypertension

- Failure to achieve targets on 3 drugs (including diuretic)
- Older age, BMI, African American, excess sodium, alcohol
- Secondary causes: Aldo, Sleep Apnea, RVH
- Excess sympathetic tone, increased aldo
- Lifestyle, diuretics, aldosterone blockade
- Renal Nerve ablation: ?????
Sleep Apnea

- 1 in 4 Americans at risk
- Linked to obesity
- High prevalence in resistant hypertension
- Pathogenesis: SNS, sodium, aldosterone, insulin resistant
- CPAP, lifestyle, aldo blockade

JNC 8: 2014

- Evidence Based Guidelines Addressing:
 - Health benefits of treating specific BP thresholds with antihypertensive therapy
 - Health benefits of achieving specific BP targets
 - Comparative benefits of various antihypertensive drugs/classes

JNC 8

- Hypertensives > 60 years should be treated to BP < 150/80 mm Hg
- Hypertensives < 60 years should be treated to a diastolic goal < 90 mm Hg
- Lack of evidence for persons < 30 years; Recommend BP < 140/90 mm Hg

Conclusions

- Hypertension is the most treatable CVD risk factor
- Hypertension is responsible for tremendous global burden of disease
- Assess and treat concomitant risk factors; Lifestyle modification for all patients
- Lowering blood pressure is more important than how you lower BP; most patients require 2 or more agents
- Combination therapy is reasonable for stage 2 hypertensives
Some Recent Antihypertensive Trials

<table>
<thead>
<tr>
<th>Trial</th>
<th>N</th>
<th>Age</th>
<th>Drugs</th>
<th>Outcome</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOP HTN-2</td>
<td>6614</td>
<td>76</td>
<td>Conventional Drugs vs ACE and Ca blockers</td>
<td>CV mortality</td>
<td>No differences observed</td>
</tr>
<tr>
<td>1999</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIFE 2000</td>
<td>9193</td>
<td>67</td>
<td>ARB vs β Blockers</td>
<td>CV events</td>
<td>ARB better, Mostly stroke</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ALLHAT 2002</td>
<td>33,330</td>
<td>67</td>
<td>Diuretic/ACE/ Ca blocker</td>
<td>Major CAD events</td>
<td>No difference 36% Blacks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANBP 2003</td>
<td>6083</td>
<td>72</td>
<td>ACE vs Diuretic</td>
<td>CV events, death</td>
<td>ACE better: white men</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCOT 2005</td>
<td>19,257</td>
<td>40-79</td>
<td>BB/diuretic vs Ca blocker/ACE</td>
<td>Non fatal/fatal MI, total CVD</td>
<td>'Newer' drugs: fewer endpts, less diabetes</td>
</tr>
</tbody>
</table>