Acute Kidney Injury:
Prevention & Non-Dialytic Therapy

Paul M. Palevsky, M.D.
Chief, Renal Section
VA Pittsburgh Healthcare System
Professor of Medicine
University of Pittsburgh School of Medicine

Classification of the Etiologies of Acute Kidney Injury

Prerenal Azotemia

Glomerular Hemodynamics in Hyperdynamic Sepsis

AKI in Liver Disease
- Pre-renal Azotemia
- Hepatorenal Syndrome
- Acute Tubular Necrosis
- Interstitial Nephritis
- Glomerular Syndromes
 - IgA nephropathy
 - cryoglobulinemia
 - MPGN
 - Membranous nephropathy

Renal Dysfunction in Cirrhosis

Diuretic Responsive Ascites
Diuretic Refractory Ascites
Hepatorenal Syndrome
Normal GFR ↓↓↓ GFR
Diagnostic Criteria for Hepatorenal Syndrome
- Major criteria
 - Low GFR (Scr > 1.5 mg/dL or CrCl < 40 mL/min)
 - Absence of shock, ongoing bacterial infection, treatment with nephrotoxins, or fluid losses
 - No sustained improvement in renal function following diuretic withdrawal and expansion of plasma volume with 1.5 L of isotonic saline
 - Proteinuria < 500 mg/dL and no ultrasonographic evidence of obstructive uropathy or parenchymal renal disease
- Additional Criteria
 - Urine volume <500 mL/d
 - Urine sodium <10 mmol/L
 - Urine osmolality > plasma osmolality
 - Urine red blood cells < 50 per high power field
 - Serum sodium concentration < 130 mmol/L

Revised Diagnostic Criteria for Hepatorenal Syndrome
- Cirrhosis with ascites
- Serum creatinine >1.5 mg/dl
- No improvement of serum creatinine after at least 2 days with diuretic withdrawal and volume expansion with albumin
 - The recommended dose of albumin is 1 g/kg of body weight per day up to a maximum of 100 g/day
- Absence of shock
- No current or recent treatment with nephrotoxic drugs
- Absence of parenchymal kidney disease as indicated by proteinuria >500 mg/day, hematuria (>50 RBC/hpf)
 and/or abnormal renal ultrasonography

Pathogenic Mechanisms in Hepatorenal Syndrome
- Peripheral and splanchnic vasodilatation without adequate increase in cardiac output
- Activation of RAAS, SNS, & Vasopressin
- Renal vasoconstriction
 - Salt and H2O retention
- Ascites
- Bacterial infection
- Hemorrhage
- Aggressive diuresis
- Large volume paracentesis
- SBP
- HRS

Forms of Hepatorenal Syndrome
- Type 1
 - Doubling of serum creatinine to a level of >2.5 mg/dL or a reduction in creatinine clearance by 50% or more to a value of < 20 mL/min over a duration of < 2 weeks
- Type 2
 - Moderate and stable reduction in renal function

Outcomes in Hepatorenal Syndrome
- Survival Probability over Months
- Type 1 HRS
- Type 2 HRS

Treatment of Hepatorenal Syndrome
- Liver transplantation
- Vasoconstrictors
 - Terlipressin
 - Norepinephrine
 - Midodrine / Octreotide
- Transjugular intrahepatic portosystemic shunting (TIPS)
- Renal replacement therapy as bridge therapy
Terlipressin and Albumin in HRS: Reversal of HRS

![Graph showing the probability of response to therapy for Terlipressin + Albumin vs. Albumin.](image)

- **Probability of Response**
 - **Terlipressin + Albumin** vs **Placebo**
 - *P* < 0.05

Terlipressin and Albumin in HRS: Survival by Response to Therapy

![Graph showing survival by response to therapy for Responders vs Nonresponders.](image)

- **Probability of Survival**
 - **Responders** vs **Nonresponders**
 - *P* < 0.003

Terlipressin and Albumin in HRS: Survival by Treatment Group

![Graph showing survival by treatment group for Terlipressin vs Placebo.](image)

Abdominal Compartment Syndrome

- **Definitions**
 - **Intra-abdominal hypertension:**
 - intra-abdominal pressure ≥12 mm Hg; or
 - abdominal perfusion pressure <60 mm Hg
 - **Abdominal compartment syndrome**
 - intra-abdominal pressure ≥20 mm Hg associated with one or more organ failures

- **Systemic effects**
 - **Cardiac:** ↓venous return; ↓C.O.; ↑CVP, PCWP & SVR
 - **Pulmonary:** ↓intrathoracic & airway pressures; ↓PaO2; ↑PaCO2
 - **GI:** ↓splanchnic perfusion
 - **CNS:** ↓intracranial pressure, ↓perfusion pressure
 - **Kidney:** ↓renal perfusion; ↓GFR; ↓urinary output

Abdominal Compartment Syndrome

- **Clinical settings**
 - Trauma patients following massive volume resuscitation
 - Post liver transplant
 - Mechanical limitations to the abdominal wall
 - tight surgical closure
 - burn injuries
 - Bowel obstruction
 - Pancreatitis
- **Diagnosis**
 - Measurement of intra-abdominal pressure
 - Transduction of bladder pressure
- **Treatment**
 - Abdominal decompression
Acute Interstitial Nephritis

- Acute kidney injury due to lymphocytic infiltration of the interstitium
- Classic triad of:
 - fever
 - rash
 - eosinophilia

Drug-induced
- Antibiotics
- β-lactams
- Sulfonamides
- Fluoroquinolones
- Rifampin
- Vancomycin
- Proton pump inhibitors
- Phenytoin
- Furosemide
- NSAIDs
- Malignancy

Infection-related
- Bacterial
- Viral
- Rickettsial
- Tuberculosis

Systemic diseases
- SLE
- Sarcoidosis
- Sjögren's syndrome
- Tubulointerstitial nephritis and uveitis
- Idiopathic

Acute Interstitial Nephritis: Clinical Presentation

Acute Interstitial Nephritis: Eosinophiluria

<table>
<thead>
<tr>
<th></th>
<th>Drug Induced-AIN</th>
<th>All Etiologies of AIN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n=154)</td>
<td>(n=467)</td>
</tr>
<tr>
<td>Sensitivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1%</td>
<td>35.6</td>
<td>23.3</td>
</tr>
<tr>
<td>+5%</td>
<td>29.3</td>
<td>29.3</td>
</tr>
<tr>
<td>+10%</td>
<td>31.8</td>
<td>19.8</td>
</tr>
<tr>
<td>+25%</td>
<td>38.4</td>
<td>38.4</td>
</tr>
<tr>
<td>+50%</td>
<td>24.7</td>
<td></td>
</tr>
<tr>
<td>Specificity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1%</td>
<td>68.2</td>
<td>68.2</td>
</tr>
<tr>
<td>+5%</td>
<td>89.3</td>
<td>89.3</td>
</tr>
<tr>
<td>+10%</td>
<td>61.7</td>
<td>61.7</td>
</tr>
<tr>
<td>+25%</td>
<td>89.6</td>
<td>89.6</td>
</tr>
<tr>
<td>+50%</td>
<td>32.0</td>
<td>32.0</td>
</tr>
<tr>
<td>+75%</td>
<td>35.6</td>
<td>35.6</td>
</tr>
<tr>
<td>NPV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1%</td>
<td>97.3</td>
<td>97.3</td>
</tr>
<tr>
<td>+5%</td>
<td>96.6</td>
<td>96.6</td>
</tr>
<tr>
<td>+10%</td>
<td>96.6</td>
<td>96.6</td>
</tr>
<tr>
<td>+25%</td>
<td>95.6</td>
<td>95.6</td>
</tr>
<tr>
<td>+50%</td>
<td>88.5</td>
<td>88.5</td>
</tr>
<tr>
<td>Positive LR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1%</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>+5%</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>+10%</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>+25%</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>+50%</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Negative LR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+1%</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>+5%</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>+10%</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>+25%</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>+50%</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Muriuki AK, et al. CJASN 2013; 8: 1857-1862
Acute Interstitial Nephritis: Treatment

- Discontinue offending drug
- Treat underlying infection
- Treat systemic illness
- Glucocorticoid therapy
 - recommended in patients who fail to respond to more conservative therapy
 - no RCTs have been reported

Table 2 (Characteristics of Group 1 (steroid treatment) and Group 2 (no steroid treatment))

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Group 1 (Steroid Treatment)</th>
<th>Group 2 (No Steroid Treatment)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>50.9 ± 12.2</td>
<td>58.5 ± 18.9</td>
<td>NS</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>60/50</td>
<td>70/32</td>
<td>NS</td>
</tr>
<tr>
<td>Body Surface Area (m²)</td>
<td>1.74 ± 0.40</td>
<td>1.61 ± 0.21</td>
<td>NS</td>
</tr>
<tr>
<td>Serum creatinine (mg/dL)</td>
<td>9.4 ± 5.6</td>
<td>10.5 ± 7.8</td>
<td>NS</td>
</tr>
<tr>
<td>Duration of the treatment (days)</td>
<td>13.4 ± 3.4</td>
<td>13.2 ± 4.5</td>
<td>NS</td>
</tr>
<tr>
<td>Renal artery thromboembolism</td>
<td>2/15</td>
<td>0/20</td>
<td>NS</td>
</tr>
<tr>
<td>Renal artery dissection</td>
<td>0/4</td>
<td>0/12</td>
<td>NS</td>
</tr>
<tr>
<td>Renal vein thrombosis</td>
<td>0/2</td>
<td>0/9</td>
<td>NS</td>
</tr>
<tr>
<td>Other renal artery abnormalities</td>
<td>1/1</td>
<td>2/3</td>
<td>NS</td>
</tr>
<tr>
<td>Clinical features of renal involvement</td>
<td>5/9</td>
<td>3/9</td>
<td>NS</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>3</td>
<td>7</td>
<td>NS</td>
</tr>
<tr>
<td>Dialysis</td>
<td>30/1</td>
<td>20/6</td>
<td>NS</td>
</tr>
<tr>
<td>Median length of stay (days)</td>
<td>15 (10-28)</td>
<td>10 (5-21)</td>
<td>NS</td>
</tr>
</tbody>
</table>

(All values are presented as mean ± standard deviation. NS indicates no significant difference compared to baseline.

Acute Interstitial Nephritis: Treatment

Figure: Serum Creatinine (mg/dL) vs. Days between offending drug withdrawal and onset of steroid treatment

- Steroid Treated
- Conservative Management

Acute Vascular Syndromes

- Macrovascular
 - Renal artery thromboembolism
 - Renal artery dissection
 - Renal vein thrombosis
- Microvascular
 - Atheroembolic disease

Atheroembolic Disease
Atheroembolic Disease

Risk factors
- Atherosclerosis
- CAD
- AAA
- PVD
- Hypertension
- Hypercholesterolemia
- Diabetes Mellitus

Precipitating factors
- Arterial catheterization
- Arteriography
- Vascular surgery
- Anticoagulation
- Thrombolytic therapy

General Manifestations
- Fever
- Myalgias
- Weight loss

Cutaneous Manifestations
- Livedo reticularis
- Digital ischemia

Neurologic Manifestations
- TIA/CVA
- Altered mental status
- Peripheral neuropathy
- Spinal cord infarct

Gastrointestinal Manifestations
- Anorexia
- Nausea and vomiting
- Nonspecific abdominal pain
- GI bleeding
- Ileus
- Bowel ischemia/infarction
- Pancreatitis
- Hepatitis
- Musculoskeletal Manifestations
- Myositis
- Eyes
- Amaurosis fugax
- Retinal cholesterol emboli

Laboratory Features
- Serum chemistries
 - ↑ BUN and creatinine
 - ↑ Amylase
 - ↑ CPK
 - ↑ LFTs
- Hematologic
 - Leukocytosis
 - Eosinophilia
 - Anemia
 - Thrombocytopenia
- Serologic
 - ↑ ESR
 - ↓ Serum complement
- Urine
 - Eosinophiluria
 - Proteinuria
 - Hematuria
 - Pyuria

Treatment
- Avoid anticoagulation
- Avoid vascular interventions
- ACE inhibitors / angiotensin receptor blockers
- Statin therapy
- Nutrition support
- Dialysis for management of volume status and uremia
- Role to steroid therapy is uncertain

Renal Manifestations
- Renal infarction
- Acute kidney injury
- Subacute kidney injury
- Exacerbation of hypertension
- Proteinuria (may be nephrotic)
- Hematuria

Laboratory Features
- Serum chemistries
 - ↑ BUN and creatinine
 - ↑ Amylase
 - ↑ CPK
 - ↑ LFTs
- Hematologic
 - Leukocytosis
 - Eosinophilia
 - Anemia
 - Thrombocytopenia
- Serologic
 - ↑ ESR
 - ↓ Serum complement
- Urine
 - Eosinophiluria
 - Proteinuria
 - Hematuria
 - Pyuria

Treatment
- Avoid anticoagulation
- Avoid vascular interventions
- ACE inhibitors / angiotensin receptor blockers
- Statin therapy
- Nutrition support
- Dialysis for management of volume status and uremia
- Role to steroid therapy is uncertain
Intratubular Obstruction

- Protein
- Multiple myeloma
- Crystals
 - Uric Acid
 - Oxalate
 - Medications

The Kidney in Multiple Myeloma

- Light chain cast nephropathy (myeloma kidney)
- Hypercalcemic nephropathy
- Acute uric acid nephropathy
- Plasma cell infiltration of the kidney
- Hyperviscosity syndrome
- AL amyloidosis
- Light-chain deposition disease
- Proximal tubular dysfunction (acquired Fanconi’s syndrome)

Treatment of Myeloma Cast Nephropathy

- Correction of volume depletion / saline diuresis
- Correction of hypercalcemia
- Correction of hyperuricemia
- Reduction in light-chain burden
- Chemotherapy
- Extracorporeal removal
- Plasmapheresis
- Hemodialysis with high cut-off membrane

Treatment of Myeloma Cast Nephropathy

Tumor Lysis Syndrome

Purine Catabolism

- Hypoxanthine
- Xanthine
- Uric Acid

- Xanthine oxidase
- Uricase
- Allantoin

- allopurinol

- rasburicase
Drug-Induced Crystal Nephropathies

- Sulfa Crystals
- Acyclovir Crystals
- Indinavir Crystals

Methotrexate Nephropathy

Acute Tubular Necrosis

- Ischemic
- Prolonged prerenal azotemia
- Hypotension
- Hypovolemic shock
- Cardiopulmonary arrest
- Cardiopulmonary bypass

- Sepsis

Acute Tubular Necrosis

- Nephrotoxic
- Drug-induced
- Radiocontrast agents
- Aminoglycosides
- Vancomycin
- Amphotericin B
- Cisplatin
- Acetaminophen
- Pigment nephropathy
- Hemoglobin
- Myoglobin

Prevention and Treatment of AKI

GFR

Preparative
Creation
Maintenance
Recovery

Time
Prevention of ATN

- Requirements
 - Identification of high risk patients
 - Timed insult
- Potential settings
 - Radiocontrast administration
 - Cardiovascular surgery
 - Rhabdomyolysis

Pathophysiology of Contrast-Induced Nephropathy

- Radiocontrast Administration
- Intrarenal Vasoconstriction
- Altered Blood Rheology
- Medullary Hypoxia
- Generation of ROS
- Direct Cytotoxicity

Risk Factors for Contrast-Induced Nephropathy

- Patient Related
 - Preexisting renal insufficiency
 - Diabetes mellitus
 - Intravascular volume depletion
 - Reduced cardiac output
 - Concomitant nephrotoxins
- Procedure related
 - Increased dose of radiocontrast
 - Multiple procedures within 72 hours
 - Intra-arterial administration
 - Type of radiocontrast

Strategies for Prevention of Contrast-Induced Nephropathy

- Selection of contrast agent
- Volume administration
- Pharmacologic therapy
- Hemodialysis and hemofiltration
- Avoidance of concomitant nephrotoxins

Radiocontrast Media

- High Osmolality (HOCM)
 - Diatrizoate (Hypaque, Renografin, Urografin)
 - Iothalamate (Conray)
 - Metrizoate (Isovue)
- Low Osmolality (LOCM)
 - Ioxaglate (Hexabrix)
 - Iohexol (Omnipaque)
 - Iopamidol (Isovue)
 - Iopromide (Ultravist)
 - Ioversol (Optiray)
- Iso-Osmolar (IOCM)
 - Iodixanol (Visipaque)
Relative Nephrotoxicity of HOCM and LOCM

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Studies</th>
<th>Subjects</th>
<th>Odds-Ratio (95% CI)</th>
<th>NNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior renal insufficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>with</td>
<td>8</td>
<td>1,418</td>
<td>0.50 (0.4-0.70)</td>
<td>8</td>
</tr>
<tr>
<td>without</td>
<td>20</td>
<td>2,865</td>
<td>0.75 (0.5-1.1)</td>
<td>30</td>
</tr>
<tr>
<td>Injection route</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intravenous</td>
<td>14</td>
<td>1,187</td>
<td>0.64 (0.3-1.3)</td>
<td></td>
</tr>
<tr>
<td>intraarterial</td>
<td>12</td>
<td>3,000</td>
<td>0.62 (0.5-0.8)</td>
<td></td>
</tr>
<tr>
<td>Contrast medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ioxaglate</td>
<td>4</td>
<td>173</td>
<td>0.46 (0.15-1.3)</td>
<td></td>
</tr>
<tr>
<td>non-ionic</td>
<td>22</td>
<td>4,061</td>
<td>0.63 (0.5-0.8)</td>
<td></td>
</tr>
</tbody>
</table>

NEPHRIC Study: Iodixanol vs. Iohexol

![Graph showing peak increase in serum creatinine](image)

Meta-Analysis: Iodixanol vs. LOCM

Meta-Analysis: Iodixanol vs. Iohexol Subgroup

Meta-Analysis: Iodixanol vs. Non-Iohexol LOCM

Strategies for Prevention of Contrast-Induced Nephropathy

- Selection of contrast agent
- Volume administration
 - Oral vs. intravenous
 - Isotonic vs. hypotonic fluids
- Saline vs. bicarbonate
- Pharmacologic therapy
- Hemodialysis and hemofiltration
- Avoidance of concomitant nephrotoxins
Isotonic Saline Prophylaxis of Contrast Nephropathy

Incidence of ARF: 3.7% vs 34.6%

Prevention of CIN:
Isotonic vs Half-Isotonic Saline

Prevention of CIN:
Sodium Bicarbonate vs. Saline

Prevention of CIN: Meta-Analysis of Sodium Bicarbonate Studies

Strategies for Prevention of Contrast-Induced Nephropathy

- Selection of contrast agent
- Volume administration
- Pharmacologic therapy
 - Diuretics
 - Vasodilators
 - Adenosine antagonists
 - Anti-oxidants
 - Statins
 - Iron chelators
 - Hemodialysis/hemofiltration
- Avoidance of concomitant nephrotoxins

Prevention of CIN: Saline, Furosemide and Mannitol

Prevention of CIN: Forced Euvolemic Diuresis with Furosemide and Mannitol

Prevention of CI-AKI with Matched Forced Saline Diuresis: REMEDIAL II

Prevention of CI-AKI with Matched Forced Saline Diuresis: REMEDIAL II

Prevention of CIN: Theophylline

Prevention of Contrast-Induced Acute Kidney Injury: Theophylline

Prevention of CIN: N-Acetylcysteine

Meta-Analysis: N-Acetylcysteine for Prevention of CIN

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>% CIN Control</th>
<th>% CIN NAC</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durham (2002)</td>
<td>79</td>
<td>22.0%</td>
<td>26.3%</td>
<td>0.46</td>
<td>0.33-0.63</td>
</tr>
<tr>
<td>Baker (2003)</td>
<td>80</td>
<td>20.5%</td>
<td>4.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kefer (2003)</td>
<td>104</td>
<td>5.9%</td>
<td>3.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oldemeyer (2003)</td>
<td>96</td>
<td>6.4%</td>
<td>8.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efrati (2003)</td>
<td>49</td>
<td>8.0%</td>
<td>0.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goldenberg (2004)</td>
<td>80</td>
<td>7.7%</td>
<td>9.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miner (2004)</td>
<td>180</td>
<td>22.4%</td>
<td>9.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ochoa (2004)</td>
<td>80</td>
<td>25.0%</td>
<td>8.3%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rashid (2004)</td>
<td>94</td>
<td>6.2%</td>
<td>6.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Balderramo (2004)</td>
<td>61</td>
<td>10.7%</td>
<td>3.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marenzi (2006)</td>
<td>237</td>
<td>32.8%</td>
<td>8.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khalili (2006)</td>
<td>70</td>
<td>17.1%</td>
<td>5.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poletti (2007)</td>
<td>87</td>
<td>16.3%</td>
<td>4.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaikh (2007)</td>
<td>161</td>
<td>13.8%</td>
<td>10.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shaikh (2007)</td>
<td>159</td>
<td>7.6%</td>
<td>10.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heng (2007)</td>
<td>60</td>
<td>6.2%</td>
<td>3.6%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary:

```
OR 0.46; 95% CI: 0.33-0.63
```

Acetylcysteine for the Prevention of Contrast-Induced nephropaThy (ACT) Trial

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Acetylcysteine</th>
<th>Placebo</th>
<th>RR (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in serum creatinine at 48 to 96 hours >25%</td>
<td>147/170 (12.7%)</td>
<td>142/170 (12.7%)</td>
<td>1.05 (0.81 - 1.36)</td>
<td>0.97</td>
</tr>
<tr>
<td>>0.5 mg/dL</td>
<td>49/170 (2.9%)</td>
<td>42/170 (2.4%)</td>
<td>1.06 (0.69 - 1.67)</td>
<td>0.85</td>
</tr>
<tr>
<td>>100%</td>
<td>13/170 (1.1%)</td>
<td>17/170 (1.0%)</td>
<td>0.74 (0.36 - 1.52)</td>
<td>0.41</td>
</tr>
<tr>
<td>Death or dialysis at 30 days</td>
<td>20/170 (2.9%)</td>
<td>20/170 (2.9%)</td>
<td>1.00 (0.66 - 1.58)</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Summary:

```
OR 0.46; 95% CI: 0.33-0.63
```

Prevention of CIN: Statins – Observational Data

<table>
<thead>
<tr>
<th></th>
<th>Statin-treated</th>
<th>Statin-naive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIN</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>Creatinine</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>p=0.0001</td>
<td></td>
<td>p=0.001</td>
</tr>
</tbody>
</table>

Prevention of CIN: RCT of Atorvostatin

- Although the ACT study is the largest RCT of NAC to date (N=2308), the results need to be interpreted with caution:
 - Baseline serum creatinine obtained up to 90 days pre-procedure
 - Only 15.7% of patients with a baseline serum creatinine >1.5 mg/dL
 - >20% of procedures performed using HOCM
 - Periprocedural fluid administration not standardized
Prevention of CI-AKI with Short-Term Rosuvastatin Administration

Han Y, et al. JACC 2014; 65: 62-70
Leoncini M, et al. JACC 2014; 65: 71-79

Strategies for Prevention of Contrast-Induced Nephropathy

- Selection of contrast agent
- Volume administration
- Pharmacologic therapy
- Hemodialysis and hemofiltration
- Avoidance of concomitant nephrotoxins

Meta-Analysis of RRT for Prevention of CI-AKI

Hemofiltration for Prevention of Contrast-Induced Nephropathy

Impact of RAAS Blockade on Contrast-Induced Nephropathy

The Effect of Small Changes in Serum Creatinine on Apparent Incidence of AKI
Interventions Which May Decrease Serum Creatinine

- ECF volume expansion
- Isotonic bicarbonate? (volume of distribution smaller than for saline)
- Theophylline?
- N-acetylcysteine?
- Rosuvastatin
- Renal replacement therapy
- Discontinuation of ACE-I/ARB

Strategies for Prevention of Contrast-Induced Nephropathy

- Effective
 - Low- or iso-osmolar contrast agents
 - Intravenous isotonic fluids
 - Avoidance of concomitant nephrotoxins
- Ineffective or harmful
 - Furosemide
 - Mannitol
 - Dopamine
 - Fenoldopam
 - Prophylactic RRT
- Uncertain
 - Intravenous sodium bicarbonate
 - N-acetylcysteine
 - Theophylline
 - ANP
 - Statins
 - Iron chelators

Recommendations for Prevention of Contrast-Induced Nephropathy

- Identify high risk patients
- Use low osmolar or iso-osmolar contrast in high-risk population
- Volume expand with isotonic sodium chloride or sodium bicarbonate
- Optimal fluid composition and timing and rate of fluid administration remain uncertain
- N-acetylcysteine
 - Although data are inconclusive, NAC is inexpensive and safe
- Discontinue NSAIDs

AKI after Cardiac Surgery

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Estimate (CI)</th>
<th>P Value</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female gender</td>
<td>0.48 (0.21–0.75)</td>
<td><0.001</td>
<td>1</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>0.49 (0.20–0.78)</td>
<td><0.001</td>
<td>1</td>
</tr>
<tr>
<td>Left ventricular ejection fraction <35%</td>
<td>0.39 (0.07–0.71)</td>
<td>0.016</td>
<td>1</td>
</tr>
<tr>
<td>Preoperative use of IABP</td>
<td>1.08 (0.49–1.67)</td>
<td><0.001</td>
<td>2</td>
</tr>
<tr>
<td>COPD</td>
<td>0.70 (0.37–1.34)</td>
<td><0.001</td>
<td>1</td>
</tr>
<tr>
<td>Insulin-requiring diabetes</td>
<td>0.40 (0.06–0.76)</td>
<td>0.026</td>
<td>1</td>
</tr>
<tr>
<td>Previous cardiac surgery</td>
<td>0.54 (0.28–0.81)</td>
<td><0.001</td>
<td>1</td>
</tr>
<tr>
<td>Emergency surgery</td>
<td>1.13 (0.66–1.60)</td>
<td><0.001</td>
<td>2</td>
</tr>
<tr>
<td>Surgery type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>valve only</td>
<td>0.45 (0.10–1.60)</td>
<td>0.033</td>
<td>1</td>
</tr>
<tr>
<td>CABG + valve</td>
<td>0.86 (0.53–1.39)</td>
<td><0.001</td>
<td>2</td>
</tr>
<tr>
<td>other cardiac surgeries</td>
<td>1.02 (0.56–1.49)</td>
<td><0.001</td>
<td>2</td>
</tr>
<tr>
<td>Preoperative creatinine 1.2 to <2.1 mg/dl</td>
<td>0.92 (0.64–1.21)</td>
<td><0.001</td>
<td>2</td>
</tr>
<tr>
<td>Preoperative creatinine ≥2.1 mg/dl</td>
<td>2.05 (1.29–3.24)</td>
<td><0.001</td>
<td>5</td>
</tr>
</tbody>
</table>

Specificity 55% 92% 96%
Sensitivity 80% 51% 12%
PPV 2% 10% 21%
NPV 94.6% 99% 96%

Interventions to Decrease the Risk of Post-Cardiac Surgery AKI

- Effective
 - Optimization of volume status
 - Avoidance of nephrotoxins
 - Minimization of CPB time
 - Off-pump surgery
 - Discontinuation of NSAIDs
 - Pre-operative discontinuation of RAAS blockade
 - Avoidance of hyperglycemia
- Questionably Effective
 - Fenoldopam
 - rhANP
- Ineffective
 - Dopamine
 - Diuretics
 - Theophylline
 - Bicarbonate
 - N-acetylcysteine

CORONARY Study: Off-Pump or On-Pump CABG

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Off-Pump (N=2375)</th>
<th>On-Pump (N=2377)</th>
<th>Hazard Ratio (95% CI)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome</td>
<td>9.8%</td>
<td>10.3%</td>
<td>0.95 (0.79-1.14)</td>
<td>0.59</td>
</tr>
<tr>
<td>Death</td>
<td>2.5%</td>
<td>2.5%</td>
<td>1.02 (0.71-1.46)</td>
<td></td>
</tr>
<tr>
<td>MI</td>
<td>6.7%</td>
<td>7.2%</td>
<td>0.93 (0.76-1.15)</td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>1.0%</td>
<td>1.1%</td>
<td>0.89 (0.51-1.54)</td>
<td></td>
</tr>
<tr>
<td>Dialysis</td>
<td>1.2%</td>
<td>1.1%</td>
<td>1.04 (0.61-1.76)</td>
<td></td>
</tr>
<tr>
<td>AKI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AKIN definition</td>
<td>28.0%</td>
<td>32.1%</td>
<td>0.87 (0.80-0.96)</td>
<td>0.01</td>
</tr>
<tr>
<td>RIFLE-R</td>
<td>17.0%</td>
<td>19.5%</td>
<td>0.87 (0.76-0.98)</td>
<td>0.02</td>
</tr>
<tr>
<td>RIFLE-I</td>
<td>6.1%</td>
<td>7.4%</td>
<td>0.83 (0.66-1.03)</td>
<td>0.09</td>
</tr>
<tr>
<td>RIFLE-F</td>
<td>2.0%</td>
<td>2.6%</td>
<td>0.77 (0.52-1.13)</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Prevention of AKI in Non-Cardiac Surgery

- Goal-directed peri-operative hemodynamic management
- Avoidance of intra-operative hypotension
- Avoidance of NSAIDs

Prevention of Myoglobinuric AKI

- Standard management recommendations
 - Aggressive intravenous fluids
 - Bicarbonate
 - Mannitol

Duration of Hypotension and Risk of AKI in Non-Cardiac Surgery

Intraoperative BP and Risk of AKI in Non-Cardiac Surgery

Prevention of Myoglobinuric AKI
Role of Mannitol and Bicarbonate

Pharmacologic Treatment of Established AKI
- Dopamine
- Fenoldopam
- Loop diuretics
- Atrial natriuretic peptide
- Insulin-like growth factor-I
- Thyroxine

Low-Dose Dopamine in AKI:
Need for RRT

Low-Dose Dopamine in AKI:
Mortality

Low-Dose Dopamine in AKI:
Urine Output

Diuretic Therapy in ATN
Diuretic Use and Fluid Balance in AKI: Post-Hoc Analysis of FACTT

<table>
<thead>
<tr>
<th>Adjustment</th>
<th>Post-AKI Fluid Balance (per mean L/Day)</th>
<th>Post-AKI Furosemide Dose (per mean 100 mg/Day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI) P-value</td>
<td>OR (95% CI) P-value</td>
</tr>
<tr>
<td>None (univariate)</td>
<td>1.73 (1.47-2.03) <0.001</td>
<td>0.38 (0.23-0.63) <0.001</td>
</tr>
<tr>
<td>Full model</td>
<td>1.61 (1.29-2.00) 0.001</td>
<td>0.54 (0.31-0.94) 0.028</td>
</tr>
<tr>
<td>+Post-AKI fluid balance</td>
<td>0.73 (0.42-1.26) 0.255</td>
<td></td>
</tr>
<tr>
<td>+Post-AKI furosemide dose</td>
<td>1.56 (1.25-1.96) <0.001</td>
<td>0.48 (0.26-0.81) 0.007</td>
</tr>
<tr>
<td>Final model</td>
<td>1.61 (1.32-1.96) 0.001</td>
<td></td>
</tr>
</tbody>
</table>

Pharmacologic Therapy of AKI
- Reasons for Lack of Success
 - Differences between animal models and human disease
 - Late application of interventions in human disease

Phases of Post-Ischemic AKI

Anaritide for ATN

AKIN Conceptual Model for Acute Kidney Injury

Candidate Biomarkers in AKI
- N-acetyl-β-D-glucosaminidase (NAG)
- Neutrophil gelatinase-associated lipocalin (NGAL)
- Kidney injury molecule-1 (KIM-1)
- Interleukin-18 (IL-18)
- Fatty acid binding protein (FABP)
- Cystatin C
- α-1-microglobulin
- β-2-microglobulin
- Matrix metalloproteinase-9 (MMP-9)
- TIMP-2 * IGFBP7
- Na+/H+ exchange isoform 3 (NHE3)
- Adenosine deaminase binding protein
- Alanine aminopeptidase
- Leucine aminopeptidase
- β-galactosidase
- α-glutathione S-transferase (α-GST)
- α-glutathione S-transferase (α-GST)
- Matrix metalloproteinase-9 (MMP-9)
- TIMP-2 * IGFBP7
- Alkaline phosphatase
- Lactate dehydrogenase (LDH)
- Neutral endopeptidase
- Retinol binding protein
Prevention and Treatment of AKI

- Volume expansion with isotonic crystalloid
- Avoid hypotension
- Prevent sepsis
- Discontinue nephrotoxins