Single Center Experience with Wingspan Stent: A Real World Experience Outside SAMMPRIS

Rohan Chitale, MD; Corey Cheresnick, BA, M.Acc; Amy Toporowski, BA; Nohra Chalouhi, MD; Stavropoula Tjoumakaris, MD; L Fernando Gonzalez, MD; Aaron S Dumont, MD; Robert H Rosenwasser, MD; Pascal Jabbour, MD

February 2, 2012
International Stroke Conference
New Orleans, Louisiana
Background

• Intracranial arterial stenosis is one of the most common causes of stroke
• May account for up to 10% of all ischemic strokes in the United States
Background

• Medical Management has been the mainstay of treatment
• Ipsilateral recurrent TIA/stroke occur in up to 18% of these patients
• Evolution of percutaneous transluminal angioplasty and stenting as potential strategy
Background

• Wingspan Stent
 • 2005 FDA approval
 • 50-99% symptomatic intracranial arterial stenosis
 • Consensus conference (2009)—endovascular angioplasty and stenting may provide particular benefit to those with >70% stenosis or ischemic symptoms related to hemodynamic changes
Background

• Safety and efficacy
 • Medical management alone versus medical management plus stent placement
 • SAMMPRIS Trial (Stenting and Aggressive Medical Management for Preventing Recurrent stroke in Intracranial Stenosis)
 • Enrollment stopped: increased periprocedural risk in stented arm, decreased risk in medical arm
 • CONCLUSION: Aggressive medical management deemed superior
<table>
<thead>
<tr>
<th>Study</th>
<th>Patients</th>
<th>Perioperative Ipsilateral Stroke</th>
<th>Long-term Ipsilateral Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bose et al (Stroke 2007)</td>
<td>45</td>
<td>4.5%</td>
<td>7.0%</td>
</tr>
<tr>
<td>Fiorella et al (Stroke 2007)</td>
<td>78</td>
<td>6.1%</td>
<td>15.7%</td>
</tr>
<tr>
<td>Zaidat et al (Neurology 2008)</td>
<td>129</td>
<td>9.6%</td>
<td>14%</td>
</tr>
<tr>
<td>Yu et al (Neurosurgery 2011)</td>
<td>57</td>
<td>5.3%</td>
<td>-</td>
</tr>
<tr>
<td>Jiang et al (Stroke 2011)</td>
<td>100</td>
<td>5.0%</td>
<td>9.0%</td>
</tr>
</tbody>
</table>
Methods

• Study Design:
 • Single institution retrospective review
 • August 7, 2006 to July 13, 2011
 • Symptomatic ICAD 50-99% evaluated
 • All but 2 had failed medical management with antiplatelets and/or antithrombotics
 • Patients treated for acute stroke or dissection were excluded
Results – patients characteristics

- 49 patients (34 M, 15 F, mean 64 yo)
- 45 (91.8%) with ≥ 70% stenosis
- 4 (8.2%) with 50-69% stenosis

- 100% suffered from ICAD-related TIA/Stroke
- 47 (96%) failed medical management
 - 2 preferred stenting over medical management
- Symptoms occurred days to years prior to intervention
 - Half occurring within 1 month of stent placement
Results – lesion characteristics

• Anterior and posterior circulation stenosis
 • 12 basilar
 • 13 vertebral
 • 3 petrous
 • 5 cavernous
 • 5 supraclinoid
 • 11 M1
• 100% with focal lesions
• 16% (n=8) with tortuous vessel anatomy
Results – lesion characteristics

- Successful stent placement in 91.8% (n=45)
- All 4 unsuccessful attempted stents were attributed to tortuous vessel anatomy
 - 50% failure rate among patients with tortuosity
 - 3 failed deployments in M1
 - 1 failed deployment in basilar artery
Immediate Post-operative Complications

- 4 strokes (8.9%)
 - 2 fatal (4.4%)
 - Complete in-stent thrombotic occlusion
- 1 STEMI requiring coronary stents
- No intracranial hemorrhagic complications
Long-term Follow-up

• Data available for 77.8% (n=35)

• Ipsilateral stroke/death rate = 9% (n=3)
 • →20% composite long-term stroke risk
Long-term Follow-up

- Imaging f/u for 65% of patients
 - (40% angiogram, 25% MRA/CTA)
 - 25% (n=7) with in-stent thrombosis
 - 3 of 7 symptomatic
De novo mid-basilar aneurysm formation
<table>
<thead>
<tr>
<th>Study</th>
<th>Patients</th>
<th>Perioperative Ipsilateral Stroke</th>
<th>Long-term Ipsilateral Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bose et al (Stroke 2007)</td>
<td>45</td>
<td>4.5%</td>
<td>7.0%</td>
</tr>
<tr>
<td>Fiorella et al (Stroke 2007)</td>
<td>78</td>
<td>6.1%</td>
<td>15.7%</td>
</tr>
<tr>
<td>Zaidat et al (Neurology 2008)</td>
<td>129</td>
<td>9.6%</td>
<td>14%</td>
</tr>
<tr>
<td>Yu et al (Neurosurgery 2011)</td>
<td>57</td>
<td>5.3%</td>
<td>-</td>
</tr>
<tr>
<td>Jiang et al (Stroke 2011)</td>
<td>100</td>
<td>5.0%</td>
<td>9.0%</td>
</tr>
<tr>
<td>OUR SERIES</td>
<td>49</td>
<td>8.9%</td>
<td>20%</td>
</tr>
</tbody>
</table>
Variables Affecting Risk Rate

• Length of lesion
 • 100% were focal
 • Diffuse lesions \rightarrow difficulty navigating, more stents, longer procedure times

 • Short stenotic lesions = 8% stroke rate
 • Diffuse lesions = 87% stroke rate
Variables Affecting Risk Rate

• Tortuosity
 • 4 of 4 unsuccessful stent attempts related to tortuous vessel anatomy

• Assessment of tortuosity preoperatively may help stratify risk and safety of stent placement
Variables Affecting Risk Rate

- In-Stent Thrombosis
 - Eurasian Registry -- 7.5% ISR
 - Levy, et al -- 29.7% ISR
 - 76% asymptomatic

- Our series -- 25% ISR
 - 57% asymptomatic

- Stent-sizing and post-stent dilation may be factors
- Age<55 and anterior circulation \rightarrow increased risk
- Supraclinoid lesions most prone to symptomatic stenosis
 - 2 of 3 symptomatic ISR
Variables Affecting Risk Rates

- Timing of Treatment
 - WASID - highest risk of recurrent ischemic attack in first 3 weeks
 - SAMMPRIS – treated within 30d of enrollment
 - 26 of our patients had symptoms >30d
 - → increased immediate risk of waiting
 - → more stable, less mobile atherosclerotic plaque

- Conversely, risk of stroke decreases at 1 year with medical management alone if no symptoms within 1 month of first event
Variables Affecting Risk Rates

• Iatrogenic Issues
 • Intracerebral Hemorrhage-
 • SAMMPRIS – 30.3% of periprocedural strokes
 • Our series – No hemorrhages periprocedurally

• Potentially related to:
 • Aggressive intraprocedural heparinization & antiplatelet therapy in patients with recent infarcts
 • Blood pressure management
 • Operator experience with delicate intracranial vessels
Limitations

- Retrospective Study
- Follow-up data, monitoring
- Too few numbers to perform subset analyses
- Patient compliance
Conclusions

• Our “Real World” Experience is consistent with risk profile of initial trials regarding Wingspan safety and efficacy

• Anatomical characteristics, timing of treatment, experience may play a role in differences in results

• Further studies need to be done to evaluate this
Conclusions

• Improvement of success rates may prove the value of stenting for ICAD, particularly for those who have already failed optimal medical management, and who are lacking other options
References

