Aspirin-Triggered Neuroprotectin D1 Protects the Penumbra in Focal Cerebral Ischemia in Rats

N.G. Bazan,¹ C.N. Serhan,² N.A. Petasis,³ L. Khoutorova,¹ K.D. Atkins,¹ T.D. Eady,¹ S. Hong,¹ B. Jun,¹ A. Obenaus,⁴ L. Belayev¹

¹Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA.
²Center for Exper. Therap. and Reperfusion Injury, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA.
³Department of Chemistry, University of Southern California, Los Angeles, CA.
⁴Non-Invasive Imaging Laboratory, Loma Linda University, Loma Linda, CA.

nbazan@lsuhsc.edu
Nicolas G. Bazan, M.D., Ph.D.
Aspirin-Triggered Neuroprotectin D1
Protects the Penumbra in Focal Cerebral Ischemia in Rats

Financial Disclosure

No relevant financial relationship exists
Neuroprotectin D1 Inhibits MCA-O Mediated PMN Infiltration, NF-κB Induction, COX-2 Expression and Decreases Infarct Size

MCAo in mouse – 60 min
NPD1 infused into 3rd ventricle
(400 ng/2 days)
Histology – 48 h

Endogenous NPD1

PMN infiltration

Myeloperoxidase

Contralateral Ipsilateral (MCA-O)

Vehicle

Neuroprotectin D1

NFκB induction
• COX-2 expression
• Stroke size

Marcheselli, et.al., JBC (2003)
DHA Potentiates NPD1 Synthesis in the Penumbra 3 Days After MCAo

Sprague Dawley rats
MCAo - 2 hours
DHA (5 mg/kg) or Saline, 3h after onset of ischemia
Lipidomic analysis on day 3

Neuroprotectin D1 (NPD1), the DHA-derived lipid mediator, and 17-HDHA (a marker of 17-H(p)DHA, the short lived NPD1 precursor) were isolated from the penumbra using mass spectrometer (LC-UV-MS/MS)

P: penumbra
C: core
Neuronal COX-2 Expression is Enhanced During Synaptic Network Disinhibition

COX-2 (yellow), MAP2 (red), and DNA (blue) imaged as a Z-stack by laser confocal microscopy. Data rendered in 3D.

Synaptic and Extrasynaptic NMDA Receptors Differentially Modulate Neuronal Cyclooxygenase-2 Function, Lipid Peroxidation, and Neuroprotection
D. Stark and N. Bazan
The Journal of Neuroscience: 13710-13..2011
OBJECTIVE:

- **Does docosahexaenoic acid plus aspirin elicits the synthesis of a novel NPD1 in the MCA-O penumbra?**
- **If so, is the new mediator endowed with bioactivity?**

- DHA is the precursor of **neuroprotectin D1 (NPD1)**, potent modulator of neuroinflammation and neuroprotective.

- **Aspirin** (nonsteroidal anti-inflammatory Drugs, NSAIDs).
- Irreversibly inhibitor of COX-1 by acetylation of a lysine in the active site.
Novel Proresolving Aspirin-Triggered DHA Pathway

Charles N. Serhan,1,* Gabrielle Fredman,1 Rong Yang,1 Sergey Karamnov,1 Ludmila S. Belayev,2 Nicolas G. Bazan,2 Min Zhu,3 Jeremy W. Winkler,3 and Nicos A. Petasis3

1Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institutes of Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA 02115, USA
2Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
3Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, CA 90089, USA
*Correspondence: cnserhan@zeus.bwh.harvard.edu
DOI 10.1016/j.chembiol.2011.06.008

SUMMARY

Endogenous mechanisms in the resolution of acute inflammation are of interest because excessive inflammation underlies many pathologic abnormalities. We report an aspirin-triggered DHA metabolome that biosynthesizes a potent product in inflammatory exudates and human leukocytes, namely aspirin-triggered Neuroprotectin D1/Protectin D1 [AT-(NPD1/PD1)]. The complete stereochemistry of AT-(NPD1/PD1) whereas resolvins and protectins promote and stimulate active resolution (Bazan et al., 2010; Serhan et al., 2002; Serhan and Savill, 2005). In excess, prostaglandins and leukotrienes are proinflammatory (Samuelsson, 1983).

Unlike many of the current anti-inflammatory agents, which delay complete resolution and are considered toxic to this vital process (i.e., resolution toxic) (Gilroy et al., 1999; Schwab et al., 2007), aspirin is unique in that it jump-starts resolution by novel previously unrecognized mechanisms that involve the biosynthesis of aspirin-triggered (AT) lipid mediators (Gilroy and Perretti, 2005; Serhan, 2007). For example, aspirin-triggered
Characterization of Aspirin Triggered-Neuroprotectin D1 (AT-NPD1) and Evidence for its Biosynthesis after MCA-o upon DHA+Aspirin (iv)

N. Bazan, et al, (submitted)
LC MS/MS Lipidomic Study

DHA+Aspirin Induces Neurological and Histopathological Protection with Concomitant Synthesis of AT-NPD1

- AT-NPD1 synthesis increased by DHA+Aspirin.
- NPD1 and 17HDHA increased by DHA,
- PGE$_2$ reduced by Aspirin and DHA+Aspirin.
Animals: Male Sprague Dawley rats (285-360 g)

Anesthesia: Isoflurane/nitrous oxide/oxygen

Physiological Monitoring: Rectal and cranial temperatures, arterial blood gases (pO$_2$, pCO$_2$) and pH, plasma glucose, hematocrit

Middle cerebral artery occlusion - 2 hours

Experimental Protocol

- **MCAo – 2h**
 - Treatment
 - Behavioral testing

Ex vivo MRI, Immunohistochemistry

- AT-NPD1 (Sodium salt), 333 µg/kg, IV
- AT-NPD1 (Methyl Ester), 333 µg/kg, IV
- Saline at 3h after onset MCAo, IV
Both AT-NPD1 treatments improve total neurological score

Belayev, et al, 2012 (under review)
Both AT-NPD1 treatments reduce cortical lesion
Both AT-NPD1 increase SMI-71 positive vessels and GFAP positive astrocytes and decrease ED-1 microglia/microphages cell count.
Immunohistochemistry

Computer-generated MosaiX processed images of SMI-71 (positive vessels), GFAP (positive astrocytes), ED-1 (positive microglia/microphages) and GFAP/ED-1 double staining
Histopathology (day 7)

Both AT-NPD1 reduce cortical, subcortical and total infarct areas and volumes.
White Matter

AT-NPD1-ME enhances white matter reorganization
3D Volumes Were Computed From T2WI on day 7

Both AT-NPD1 treatments reduce total lesion
T2-Weighted Imaging: Brain Edema and Water Mobility

AT-NPD1 treatment reduces brain edema and improves water mobility.
Both AT-NPD1 treatments reduce subcortical lesion volumes.
Both AT-NPD1 treatments reduce total lesion volumes.
Biosynthesis and Mechanism of Action of Neuroprotectin D1 (NPD1) and of Aspirin-Triggered Neuroprotectin D1 (AT-NPD1)

PLA$_2$

Free DHA

- **Acetylated COX-2**
- **15-LO-1**

Neuroprotectin D1 (NPD1)

Neurotrophins (e.g. PEDF, BDNF, CNTF, LIF, NT3)

- **Neurotrophins**
 - 15-LO-1
 - Neuroprotectin D1 (NPD1)

Docosanoids

- **Aspirin-triggered Neuroprotectin D1 (AT-NPD1)**
- **15-LO-1**

Potent Neuroprotective Bioactivity in MCA-O

Bioactivity

- **PMN Infiltration**
- **Pro-inflammatory Gene expression**
 - COX-2,CEX1,B-94 Polymorphonuclear Leukocytes infiltration and Activation (PMNs)
- **Pro-Apoptotic Bcl-2 Proteins**
 - PP2A-BCLxl-Bax
- **Anti-Apoptotic Bcl-2 Proteins**

PPRgamma

Akt-1 (Akt/PKB) and m-Tor

Cornea nerve regeneration

- PPRgamma
- Akt-1 (Akt/PKB) and m-Tor
- Cornea nerve regeneration
CONCLUSIONS

• AT-NPD1 and AT-NPD1-methyl-ester *improved neurological deficit* when treatment is administered up to 3 h after onset of ischemia.

• AT-NPD1 and AT-NPD1-methyl-ester *reduced T2 WI total, cortical and subcortical lesion areas and volumes*.

• AT-NPD1-methyl-ester appear to be more beneficial on neurological deficits and lesion volume outcome compared to AT-NPD1 in sodium salt formulation.
Acknowledgements

Neuroscience Center of Excellence, LSUHSC, New Orleans, LA

Ludmila Belayev

Larissa Khoutorova

Kristal D. Atkins

Tiffany D. Eady

Song Hong

Harvard Medical School

Charles N. Serhan

Loma Linda University, Loma Linda, CA

Andy Obenaus

University of Southern California

Nicos A. Petasis

National Institutes of Health, NEI, NCRR and NINDS